FISH and CHIPS Oops! FISH and CRISPR The sequence specificity of the CRISPR-Cas9 technology has inspired its exploitation to reveal specific sequences by coupling the CRISPR machinery with a fluorochrome. Several papers have been published on this topic since 2013. The technology has proved to be problematic, but the continued improvements in the system were promising. The paper by Chaudhary et al. (2020) focuses mainly on suppression of the background fluorescence and claims that the technique can be used with a conventional fluorescence microscope (the one familiar to cytogeneticists). The procedure still faces some limitations: the requirement for <u>PAM sequences</u> and the need for a minimum number of repeats. This means that unique sequences are not in its range for now. On the other hand near-PAMless engineered CRISPR-Cas9 variants, for instance, have already been reported last April in <u>Science</u>. The technology, anyway, deserves attention because of its great potential advantages: it requires neither DNA denaturation, nor a hybridization (usually long) step, nor a large DNA clone to be used as a probe.